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Abstract
An exact expression for the partial wave hard sphere quantum propagator
in three-dimensional space is given in terms of the Fourier transform of an
expression involving spherical Bessel functions. For the s wave case, the
Fourier transform is calculated analytically. This Fourier transform is also
evaluated for the general case by contour integration in terms of a Laplace
transform and residues contributions. The accuracy of previous approximations
for a hard sphere quantum propagator can thus be evaluated. In particular, the
Van Vleck–Gutzwiller classical approximation is found to be very accurate
provided that the classical action is greater than only a few units of reduced
Planck constant.

PACS numbers: 02.30.Gp, 03.65.Nk, 03.65.Sq

1. Introduction

Propagators are important conceptual tools in quantum mechanics. For a given physical
system, propagators are matrix elements of the time evolution operator U(tf , ti) which can be
used to obtain the state |ψ(tf )〉 of the system at time tf if its state at time ti is |ψ(ti)〉. In the
Schrödinger picture : |ψ(tf )〉 = U(tf , ti)|ψ(ti)〉. For example, they are studied and discussed
in the non-relativistic context in [1] and in both non-relativistic and relativistic contexts in
[3]. Propagators are particularly important for Feynman formulation of quantum mechanics
in terms of path integrals.

In the non-relativistic context to be considered here, analytic exact expressions for
propagators are known for only a few simple systems, for example, free particles or harmonic
oscillators [1, 2]. An exact analytic expression for the propagator of a particle interacting only
with a hard sphere is not known. This has motivated the search for approximate expressions.
The so-called image approximation propagators [4–6] have been the first ones. They have now
been superseded by a more recent attempt of Cao and Berne [7], to be called hereafter the CB
propagator or the CB approximation. The hard sphere propagator, for real or imaginary time,
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is a basic ingredient for the study of thermodynamic properties of hard sphere systems (fluid
or solid) and Bose–Einstein condensation of gases [8–16]. The CB approximation is based on
a purely quantal approach to scattering, and has largely been used in these applications. But
there is also another approximation for the hard sphere quantum propagator [17–19], involving
only classical quantities as inputs. We shall call it the Van Vleck–Gutzwiller propagator, to
be called hereafter the VG propagator or the VG approximation, which has been used for
example in [20].

In the present paper, an exact expression for the partial wave hard sphere quantum
propagator is given in terms of the Fourier transform of an expression involving spherical Bessel
functions. This Fourier transform is also evaluated by contour integration in terms of a Laplace
transform and residues contribution (see section 4.3). The accuracy of previous attempts at
approximations for the hard sphere quantum propagator can thus be evaluated by comparison
with exact results obtained by numerical integration of the exact expressions based on Fourier
or Laplace transforms. It is also shown that for the s wave hard sphere quantum propagator,
the Fourier transform can be calculated analytically, leading to a simple expression (see
equation (15)).

Our starting point is the well-known expression (see, e.g., [3, 21]) of the retarded time
evolution operator as a Fourier transform of the resolvent G(z) = (z−H)−1 for a system with
time-independent Hamiltonian:

θ(tf − ti)U(tf − ti) = − 1

2π i

∫ +∞

−∞
dE exp

(
−i

E(tf − ti)

h̄

)
G(E+). (1)

The Heaviside function θ is zero when its argument is negative, and unity when its argument is
positive. The z-plane of G(z) is cut along the real positive axis, and the notation G(E+) means
limε−>0 G(E + iε) with ε > 0. Otherwise stated, on the integration interval [0, +∞], the cut
has to be approached from above, i.e. with a vanishing positive imaginary part. Equation (1)
can be verified by considering the inverse Fourier transform [21].

From now on, only the positive time interval t = tf − ti will be considered, so that the
Heaviside function will not appear in all the following.

2. An exact expression in terms of Fourier transform

What is the expression of the resolvent for a particle of mass M, in the three-dimensional
space, interacting only with a hard sphere of radius a ? To answer this question, let us first
consider the Hamiltonian H(λ):

H(λ) = H0 + λV

H0 = p2

2M

V = a3
+∞∑
�=0

�∑
m=−�

|a, �,m〉〈a, �,m|.

The vector |r, �,m〉 is a eigenvector of the squared orbital angular momentum with eigenvalue
�(�+1)h̄2, an eigenvector of the component �z of the orbital angular momentum with eigenvalue
mh̄, and a generalized eigenvector of the radial position operator with generalized eigenvalue
r. All operators are relative to a given frame O, x, y, z. The normalization is [22]

〈r ′, �′,m′|r, �,m〉 = δ(r ′ − r)

r2
δ��′δmm′ .
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It has been shown (see equation (13) of [22]) that the stationary scattering partial wave
functions for H(λ) are

〈r, �,m|p, �,m, +〉 = i�
√

2

π

{
j�(pr) − j�(pa)

1
λ2Ma3 + ph+

� (pa)j�(pa)
ph+

� (pr)j�(pa)

}
(2)

with r � a. It is easy to verify that for the limiting case λ → +∞, these stationary scattering
partial wavefunctions are eigenfunctions of H0 with vanishing boundary condition on the
sphere of radius a (see also [23]). It can also be noted that an explicit expression for the
partial wave-scattering amplitude for H(λ) can be obtained (see equation (12) of [22]). For
the limiting case λ → +∞, these partial wave-scattering amplitudes then lead exactly to the
phase shift for hard sphere scattering (compare with equation (50) of section X − 13 of [24]).

Now we are interested in the partial-wave hard sphere propagators:

〈r2, �,m|U(t)|r1, �,m〉 = − 1

2π i

∫ ∞

−∞
dE exp

(
−i

Et

h̄

)
〈r2, �,m|G(E+)|r1, �,m〉 (3)

and we first consider a partial-wave resolvent for the Hamiltonian H(λ). From the algebraic
identity

Gλ(z) = G0(z) + G0(z)λV Gλ(z)

one obtains

〈r2, �,m| Gλ(z) |r1, �,m〉 = 〈r2, �,m| G0(z) |r1, �,m〉
+ λa3 〈r2, �,m| G0(z) |a, �,m〉 〈a, �,m| Gλ(z) |r1, �,m〉

〈a, �,m|Gλ(z)|r1, �,m〉 = 〈a, �,m|G0(z)|r1, �,m〉
+ λa3〈a, �,m|G0(z)|a, �,m〉〈a, �,m|Gλ(z)|r1, �,m〉

〈a, �,m|Gλ(z)|r1, �,m〉 = 〈a, �,m|G0(z)|r1, �,m〉
1 − λa3〈a, �,m|G0(z)|a, �,m〉

so that finally

〈r2, �,m|Gλ(z)|r1, �,m〉 = 〈r2, �,m|G0(z)|r1, �,m〉
+

〈r2, �,m|G0(z)|a, �,m〉〈a, �,m|G0(z)|r1, �,m〉
1

λa3 − 〈a, �,m|G0(z)|a, �,m〉 .

Taking the limit where λ goes to infinity, one finally obtains the resolvent partial-wave matrix
elements for the hard sphere resolvent:

〈r2, �,m|G(z)|r1, �,m〉 = 〈r2, �,m|G0(z)|r1, �,m〉
− 〈r2, �,m|G0(z)|a, �,m〉〈a, �,m|G0(z)|r1, �,m〉

〈a, �,m|G0(z)|a, �,m〉 . (4)

This equation could also be obtained more directly by noting that the right member of
equation (4) satisfies the correct differential equations with respect to the variable r1 or r2

with vanishing boundary conditions at r1 = a and at r2 = a, and correct asymptotic behavior
(see equation (5)). An essentially analogous expression for the two-dimensional resolvent
for a hard disk is given in [25] with a reference to an unpublished thesis [26]. In [27], the
expression for the partial wave hard sphere resolvents (equations (4) and (5)) is given for
negative values of the energy (see equation (21) of [27]). In [27], the starting point is different
from that of the present paper in two respects. Firstly, it is the resolvent that is expressed as
an integral transform of the evolution operator (the first equation of [27]), whereas it is the
evolution operator that is expressed as an integral transform of the resolvent in our equation (1).
Secondly, imaginary time for the evolution operator is considered in [27] in order to consider
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the Boltzmann operator exp(−βH). An asymptotic series for the resolvent is then inverse-
Laplace transformed term-by-term in [27] to obtain high-temperature successive quantum
corrections for hard spheres second virial coefficients. The interest in the present method is
that it gives the partial wave resolvent not only for λ → ∞ (hard sphere), but also for arbitrary
λ values. The well-known expression for the free resolvent (see, e.g., [28]) is:

〈r2, �
′,m′|G0(E+)|r1, �,m〉 = −δ�′�δm′m2Mph+

� (pr>)j�(pr<) (5)

with

p = (2ME)1/2. (6)

r> is the largest value and r< is the smallest value of r2, r1. The spherical Bessel functions
are defined as in [24]. Specifically, the spherical Bessel functions j� and h+

� are related to the
usual Bessel function J�+1/2 regular at origin (see e.g [29]) by the equation

j�(z) ≡
(

π

2z

)1/2

J�+1/2(z)

h±
� (z) ≡ (−1)�

(
π

2z

)1/2

J−�−1/2(z) ± ij�(z).

It is stressed that (2ME)1/2 is defined on the z plane with a cut along the positive real axis.
This means that on the first Riemann sheet, the argument of z to be denoted by arg 1(z) satisfies
0 � arg 1(z) < 2π and z1/2 = |z|1/2 exp(i arg 1(z)/2). Thus z1/2 should not be confused with√

z which is traditionally defined on the z plane cut along the negative real axis, i.e with an
argument arg(z) which satisfies −π < arg(z) � π , so that

√
z = |z|1/2 exp(i arg(z)/2). On

the second Riemann sheet of the complex E plane, the argument of z to be denoted by arg 2(z)

satisfies −2π � arg 2(z) < 0 and z1/2 = |z|1/2 exp(i arg 2(z)/2).
One finally obtains

〈r2, �,m|G(E+)|r1, �,m〉 = 〈r2, �,m|G0(E+)|r1, �,m〉 + 〈r2, �,m|Gn(E+)|r1, �,m〉 (7)

〈r2, �,m|G0(E+)|r1, �,m〉 = −2Mph+
� (pr>)j�(pr<) (8)

〈r2, �,m|Gn(E+)|r1, �,m〉 = 2Mph+
� (pr2)h

+
� (pr1)j�(pa)

h+
� (pa)

, (9)

where Gn(E+) represents the difference between the full resolvent of the particle in the
presence of a hard sphere and the free particle resolvent. From now on, Gn will be called the
non-free part of the hard sphere resolvent. To avoid any confusion on the vocabulary, we write
now several equations as a single index equation:

〈r2, �,m|Uk(t)|r1, �,m〉 = − 1

2π i

∫ ∞

−∞
dE exp

(
−i

Et

h̄

)
〈r2, �,m|Gk(E+)|r1, �,m〉. (10)

If the index k is absent, the left-hand side is the partial wave hard sphere propagator, and
〈r2, �,m|G(E+)|r1, �,m〉 on the right-hand side is the partial wave hard sphere resolvent. If the
index k is 0, the left-hand side is the free partial wave propagator, and 〈r2, �,m|G0(E+)|r1, �,m〉
on the right-hand side is the free partial wave resolvent. If the index k is n, the left-hand side
is the non-free part of the partial wave propagator, and 〈r2, �,m|Gn(E+)|r1, �,m〉 on the
right-hand side is the non-free part of the partial wave resolvent.

Finally, the transition from the partial wave propagator to the propagator is achieved
through a series involving Legendre polynomial P�:

〈r2|Uk(t)|r1〉 =
∞∑

�=0

2� + 1

4π
P�(cos(α))〈r2, �,m|Uk(t)|r1, �,m〉 (11)

4
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with α being the angle between r2 and r1. If the index k is absent, the left-hand side will be
called the hard sphere propagator, if the index k is 0, it will be called the free propagator and if
the index k is n, it will be called the non-free part of the hard sphere propagator. Alternatively,
the partial wave propagator is obtained from the propagator through the relation

〈r2, �,m|Uk(t)|r1, �,m〉 =
∫

d
2

∫
d
1Y

m
� (
2)〈r2|Uk(t)|r1〉Ym

� (
1) (12)

with Ym
� a spherical harmonic, and 
 a solid angle.

A well-known exact result (see, e.g., [1, 19, 30]) for the free propagator is

〈r2|U0(t)|r1〉 =
(√

M

2πh̄it

)3

exp

(
i
M[r2 − r1]2

2th̄

)
. (13)

It is worth noting that the modulus of the free propagator is independent of positions and
depends only on the length

√
h̄t/M . From now on, we shall work with units where h̄ = 1,

and we do no longer write the reduced Plank constant in the formulae. From this result, and
the relations

〈r1|r, �,m〉 = δ(r1 − r)

r2
Ym

� (r1)

exp(iβ[r2 − r1]2) = exp
(
iβ

(
r2

2 + r2
1

))
4π

∞∑
�′=0

�′∑
m′=−�′

(−i)�
′
j�′(2βr2r1)Y

m′
�′ (r2)Y

m′
�′ (r1)

one obtains the partial wave free propagator:

〈r2, �,m|U0(t)|r1, �,m〉 = 4π

(√
M

2π it

)3

exp

(
i
M

2t

(
r2

2 + r2
1

))
(−i)�j�

(
M

t
r2r1

)
. (14)

3. An exact analytical result for the s wave hard sphere propagator

For the s wave, � = 0, the spherical Bessel functions are very simple

j0(z) = sin(z)

z

h+
0(z) = exp(iz)

z

and equations (10), (5), (9) give for r2 � r1

π ir2r1

M
〈r2, 0, 0|U0(t)|r1, 0, 0〉 =

∫ ∞

−∞
dE exp(−iEt)

exp(ipr2) sin(pr1)

p

−π ir2r1

M
〈r2, 0, 0|Un(t)|r1, 0, 0〉 =

∫ ∞

−∞
dE exp(−iEt)

exp(ip(r2 + r1 − a)) sin(pa)

p
.

Since the expression for 〈r2, 0, 0|U0(t)|r1, 0, 0〉 is known from equation (14)

π ir2r1

M
〈r2, 0, 0|U0(t)|r1, 0, 0〉 = π ir2r1

M
4π

(√
M

2π it

)3

exp

(
i
M

2t

(
r2

2 + r2
1

))
j0

(
M

t
r2r1

)

=
√

2π

Mit
exp

(
i
M

2t

(
r2

2 + r2
1

))
sin

(
M

t
r2r1

)
.

5
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one obtains the non-free part of the s wave propagator by the substitutions r2 → r2 + r1 − a

and r1 → a:

〈r2, 0, 0| Un(t) |r1, 0, 0〉 = − 1

r2r1

√
2iM

πt
exp

(
i
M

2t
((r2 + r1 − a)2 + a2)

)

× sin

(
M

t
(r2 + r1 − a)a

)
. (15)

4. An exact expression for the partial wave hard sphere propagator in terms
of a Laplace transform

For the � �= 0 partial wave non-free propagators, we resort to numerical computation of
the Fourier transform (equations (3), (9)). The integrand is however of doubly oscillating
nature on the real positive axis, and numerical integration can fail, or requires too many
digits of precision or computation time. This, of course, depends on the numerical values of
the parameters t, a, r1, r2. For small t values, the difficulty as well as the computation time
increases. It is therefore of interest to have another method for comparing numerical results.
This other method is based on contour integration and residues theorem. It leads essentially to
the numerical computation of a Laplace transform. This numerical method also requires high-
digit numbers and a large computation time when t decreases. It is particularly well suitable
for large-t values. Anyway, it is useful to have two methods when numerical integration is
difficult in order to test accuracy. The expression of the propagator as a Laplace transform is
also interesting for study of asymptotic behaviors with respect to different parameters.

The Fourier transform is an integral over the interval ]−∞, +∞[. The integration over
the interval ]−∞, 0[ will be called the left part of the Fourier transform to be denoted by FL,
the integration over the interval ]0,∞[ will be called its right part to be denoted by FR:

FL = − 1

2π i

∫ 0

−∞
dE exp(−iEt)〈r2, �,m|Gn(E+)|r1, �,m〉

FR = − 1

2π i

∫ +∞

0
dE exp(−iEt)〈r2, �,m|Gn(E+)|r1, �,m〉.

4.1. Contour in the complex energy plane for the left part of the Fourier transform

Figure 1 shows the complex energy plane with its cut along the positive real axis. On the first
Riemann sheet, 0 � arg(E) < 2π .

The close contour AOBA on the left part of figure 1 is on the first Riemann sheet.
It consists of the interval [−R, 0] on the negative real axis, the interval [0,−iR] on the
negative imaginary axis and a quarter circle of radius R starting at the point −iR and ending at
the point −R. As the spherical Bessel functions are entire functions, the only singularities
of the integrand (9) are possibly at the zeros of h+

� ((2ME)1/2a). The � zeros of h+
� (z) in

the z plane have negative imaginary part (see [29]). For � = 1, one zero at z = −i. For
� = 2, 3, . . . , 10, they are shown in figure 2.

With the change of variable given by equation (6), the close contour AOBA in the E
plane becomes the close contour aOba in the p plane (see figure 3).

It consists of the interval [i
√

2MR, 0] on the positive imaginary axis, the interval[
0,

√
2MR exp

(
i 3π

4

)]
on the second bisector and part of a circle of radius

√
2MR starting

at the point
√

2MR exp
(
i 3π

4

)
and ending at the point i

√
2MR. The contour aOba does

not contain zero of h+
� and the integral along the close contour AOBA is zero. As the

6
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A O
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D

Im E

Figure 1. Contours in the cut energy plane E. The dashed line curve lies on the second Riemann
sheet.
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Figure 2. Zeros of the spherical Bessel function h+
� (z) in the z plane. For example the nine 9 on

the figure are centered on the nine zeros of h+
9(z).

contribution of the integration along the circular part goes to zero when R → +∞, the
left part of the Fourier transform is equal to the integral along the negative imaginary axis
]−i∞, 0[ on the first Riemann sheet of the E plane, where E = |E| exp

(
i 3π

2

)
, and therefore

p = √
2M |E| exp

(
i 3π

4

) = −√
2M |E| exp

(−iπ
4

)
. From the symmetry properties of the

spherical Bessel function

j�(−z) = (−1)�j�(z) h+
� (−z) = (−1)�+1h−

� (z).

With the change of variable E = −iu, one obtains finally an integral on the real positive axis
which is a Laplace transform:

FL = M

π

∫ ∞

0
du exp(−ut)z(u)j�(z(u)a)

{
−h−

� (z(u)r2)h
−
� (z(u)r1)

h−
� (z(u)a)

}

7
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a

b

O c

d

p Plane

Figure 3. Contours in the p complex plane, corresponding to the contours of figure 1.

with

z(u) =
√

2Mu exp

(
−i

π

4

)
. (16)

4.2. Contour in the complex energy plane for the right part of the Fourier transform

In order to have a close contour involving the integral on the real positive axis (first sheet of
the E plane) with a vanishing contribution of a quarter circle, the imaginary part on the quarter
circle must be negative. Since the E plane is cut along the real positive axis, the integrand
must be analytically continued into the second Riemann sheet. The closed contour OCDO in
figure 1 is the following: OC is the interval [0, R] on the real positive axis (first sheet of the
E plane), CB is a quarter circle of radius R in the second Riemann sheet and DO is the purely
imaginary interval [−iR, 0] in the second Riemann sheet. The analytical continuation of the
integrand into the second Riemann sheet is simply achieved by the equation E = |E| exp(iα)

with now −π
2 � α � 0.

With the change of variable given by equation (6), the close contour OCDO in the E plane
becomes the close contour OcdO in the p plane (see figure 3). It is seen in figures 2 and 3
that for � � 4, the integrand has poles inside the contour with respect to the variable p. The
number of poles increases slowly with �: one pole for � from 4 to 7, two poles for � from 8
to 12, etc. The right part of the Fourier transform is finally equal to minus the integral along
the negative imaginary axis ]−i∞, 0[ on the second Riemann sheet of the E plane, where
E = |E| exp

(−iπ
2

)
, and therefore p = √

2M |E| exp
(−iπ

4

)
, minus the contribution of the

poles. With the change of variable E = −iu, one finally obtains an integral on the real positive
axis which is a Laplace transform:

FR = M

π

∫ ∞

0
du exp(−ut)z(u)j�(z(u)a)

h+
� (z(u)r2)h

+
� (z(u)r1)

h+
� (z(u)a)

+
∑
p0

residues(f (p))

8
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with z(u) again defined by equation (16), and

f (p) = 2 exp

(
−i

p2

2M
t

)
p2h+

� (pr2)j�(pa)h+
� (pr1)

h+
� (pa)

. (17)

The summation over p0 is over all zeros of h+
� (pa) with respect to the variable p between the

real positive axis and the second bisector (see figure 2). For � < 4 , this summation over p0

is empty and therefore yields 0.

4.3. Final results

Let us summarize the results. The partial wave hard sphere propagator for a sphere of radius
a is given by

〈r2, �,m|U(t)|r1, �,m〉 = 〈r2, �,m|U0(t)|r1, �,m〉 + 〈r2, �,m|Un(t)|r1, �,m〉 (18)

where the free part 〈r2, �,m|U0(t)|r1, �,m〉 is given by equation (14 ) and where the non-free
part of the partial wave propagator 〈r2, �,m|Un(t)|r1, �,m〉 is given by the Fourier transform:

〈r2, �,m|Un(t)|r1, �,m〉 = −M

π i

∫ ∞

−∞
dE exp(−iEt)

ph+
� (pr2)h

+
� (pr1)j�(pa)

h+
� (pa)

(19)

with p defined by equation (6). Another expression for the non-free part of the partial wave
propagator is given by a Laplace transform (with residues contributions if � � 4):

〈r2, �,m|Un(t)|r1, �,m〉 = M

π

⎧⎪⎨
⎪⎩

∫ ∞
0 du exp(−ut)z(u)j�(z(u)a)[
h+

� (z(u)r2)h
+
� (z(u)r1)

h+
� (z(u)a)

− h−
� (z(u)r2)h

−
� (z(u)r1)

h−
� (z(u)a)

]
⎫⎪⎬
⎪⎭

+
∑
p0

residues(f (p)) (20)

with z(u) defined by equation (16) and f (p) defined by equation (17). The summation over
p0 is over all zeros of h+

� (pa) whose arguments are in the interval ]−π/4, 0[.
For s wave (� = 0), the integration has been done analytically and yields the result given

by equation (15).

5. Numerical results

5.1. Comparison with a quantal approximation

Several attempts to approximate analytical expressions for the hard sphere propagator has
been made in the past [4, 5]. These approximations have been called image approximations.
More recently, the CB [7] approximation has superseded image approximations. The CB
propagator, noted 〈r2| UCB(t) |r1〉 is [7]:

〈r2| UCB(t) |r1〉 =
(

M

i2πt

)3/2
[

exp

(
i
M (r2 − r1)

2

2t

)
− a(u − a)

r2r1
exp

(
i
MD

2t

)]
(21)

with

u = r2 + r1

D = u2 − 2au + 2a2 − 2a(u − a) cos(α).

The first term involving exp
(
iM(r2−r1)

2

2t

)
corresponds to the free propagator, and the non-free

part of the CB propagator, to be denoted by 〈r2| UCBn(t) |r1〉 is thus

〈r2| UCBn(t) |r1〉 = −
(

M

i2πt

)3/2
a(u − a)

r2r1
exp

(
i
MD

2t

)
.

9
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Table 1. First line: �, exact non-free part of the partial wave propagator 〈r2, �, m|Un(t)|r1, �, m〉
(see equations (19), (20)), non-free part of the CB propagator 〈r2, �, m|UCBn(t)|r1, �, m〉 (see
equation (22)), for M = 1, t = 1, a = 1, r1 = 2, r2 = 3.

� 〈3, �, m|Un(1)|2, �, m〉 〈3, �,m|UCBn(1)|2, �, m〉
0 0.0997 − 0.0140 i 0.0997 − 0.0140 i
1 0.0122 + 0.0565 i 0.0086 + 0.0612 i
2 0.1216 − 0.0560 i 0.146 − 0.020 i
3 −0.0746 − 0.0764 i −0.0169 − 0.1208 i
4 −0.0165 + 0.0536 i −0.0658 + 0.0092 i
5 0.0206 − 0.0085 i 0.0038 + 0.0273 i
6 −0.00676 − 0.00168 i 0.0162 − 0.0023 i
7 0.00140 + 0.00095 i −0.00037 − 0.00263 i
8 −0.000239 − 0.000174 i −0.000652 + 0.000091 i
9 0.0000307 + 0.0000116 i 0.000020 + 0.000143 i

One deduces from equation (12) the non-free part of the partial wave CB propagator:

〈r2, �,m|UCBn(t)|r1, �,m〉 = −4π

(√
M

2πit

)3
a(u − a)

r2r1
exp

(
i
M(u2 − 2au + 2a2)

2t

)

× (−i)�j�

(
Ma(u − a)

t

)
. (22)

Comparison with equation (15) shows that the CB propagator gives the exact result for
the s wave � = 0. However, the CB partial wave propagator rapidly becomes inaccurate when
� increases, as shown in table 1. The modulus of the CB partial wave propagator does not
decrease sufficiently rapidly for large � values. For example, for � = 25, the exact result is
(−3.02 + 1.98i) × 10−30 whereas the CB result is (2.4 + 17.1i) × 10−20.

It is of interest to see how the non-free part of the CB partial wave propagator can
be obtained from the exact result (equation (19)). One first replaces all h+

� functions of
the integrand by their asymptotic form for large argument: h+

� (z) 	 exp
(
iz − �π

2

)
/z.

This gives a
pr2r1

exp
(
i
(
p(r2 + r1 − a) − �π

2

))
. Now one considers the limit form of all h+

�

functions of the integrand for small argument: h+
� (z) 	 z−�−1(2� + 1)!!/(2� + 1). This

gives p−�−1 (a/(r1r2))
�+1 (2� + 1)!!/(2� + 1). Then the replacement of all h+

� functions of
the integrand by a

r2r1
(r2 + r1 − a)h+

� (p(r2 + r1 − a)) ensures the correct asymptotic behavior
for large argument and a correct behavior with respect to p, namely proportional to p−�−1 in
the limit of small p values. The Fourier transform then can be evaluated analytically and one
obtains equation (22). Since h+

0(z) coincides with its asymptotic form, one understands why
the Cao–Berne partial wave propagator is exact for � = 0. One understands also why the
disagreement increases with � since the asymptotic behavior of h+

� (z) is attained for increasing
values of z when � increases.

Summation over partial waves (see equation (11)) gives the propagator as a function of the
angle α between the two vectors r2, r1 (see figure 4). Specifically, the hard sphere propagator
has been numerically calculated by adding its free part computed according to equation (13),
and its non-free part computed by summing the partial wave propagators (equation (11) with
index k equal to n). The critical values αc for which the vector r2−r1 is tangent to the hard
sphere of radius a are given by the geometrical relation

αc = arccos

(
a

r1

)
+ arccos

(
a

r2

)
. (23)

10
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c

Figure 4. The origin of the two vectors r1, r2 is the center of a hard sphere of radius a = 1. α is
the angle between r1, r2. The norms of the two vectors are constant, r1 = 2, r2 = 3. The extremal
values of |r2 − r1| are 1 (parallel case) and 5 (antiparallel case). When r2 − r1 becomes tangent to
the hard sphere of radius a, the angle α has the critical value αc above which no classical trajectory
exists.
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Figure 5. Modulus of the hard sphere quantum propagator as a function of the angle α between
the two vectors r1, r2 for the geometrical configurations of figure 4 (a = 1, r1 = 2, r2 = 3), for
M = 1, and t = 25, 5, 1, 1/5. Full curve: exact result. Dashed curve: Cao–Berne approximation
(see equation (21)). Points: Van Vleck–Gutzwiller approximation (see equation (24)). The vertical
line indicates the value of the critical angle αc . The horizontal lines indicate the values of the
modulus of the free propagator (see equation (13)).

We call the domain α < αc the classical domain, and the domain α > αc the classically
forbidden domain.

Exact numerical results for the modulus of the hard sphere propagator are compared with
the CB approximation in figures 5 and 6. In these figures, the CB approximation reproduces

11
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0.5 1.0 1.5 2.0 2.5 3.0

0.00
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0.04

0.06

0.08

t 1

Figure 6. Modulus of the hard sphere quantum propagator as a function of the angle α between the
two vectors r1, r2 for a = 1, r1 = r2 = 5, M = 1, t = 1. Full curve: exact result. Dashed curve:
Cao–Berne approximation (See equation (21)). Points: Van Vleck–Gutzwiller approximation (See
equation (24)). The vertical line indicates the value of the critical angle αc . The horizontal lines
indicate the values of the modulus of the free propagator (see equation (13)).

the main qualitative behavior of the exact results. In the classical domain, the oscillations have
a very large amplitude and the phase may be incorrect, although the number of oscillations
is correct for the examples considered. The exact results exhibit a significant decrease before
coming into the classically forbidden domain. This decrease is physically quite natural. The
CB approximation does not always decrease sufficiently, and, for example, an unphysical
maximum just after αc for t = 1/5 appears. To summarize, the CB approximation has been
found globally qualitatively correct but quantitatively inaccurate.

An interesting phenomenon exhibited by the exact results is a local maximum for α = π .
This effect is particularly visible in figure 6. This counter intuitive effect from a classical
view point is a purely quantal reminiscent of a similar effect in optics: central bright spot
(called Maraldi or Poisson or Arago spot) at the centre of the geometrical shadow in Fresnel
diffraction by a circular obstacle [31, 32].

5.2. Classical arguments and limit cases

How rapidly does the summation over partial wave converge (see equation (11))? An
estimation for the maximum value �M to be used for truncating the series (11) is obtained
by looking at a majorant for the classical angular momentum compatible with M,a, r1, r2, t

values. For fixed values of the velocity v, the angular momentum is maximum at maximal
impact parameter a, when the trajectory is tangent to the hard sphere. The modulus of the
angular momentum in this configuration is the product aMv. For a given time t, the velocity
is maximum for the maximum distance along trajectories compatible with r1 and r2. The

12
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trajectory distance between r and the hard sphere is maximum for the tangential trajectory,
and is then

√
r2 − a2. A classical majorant for angular momentum is then:

�c = aM

√
r2

1 − a2 +
√

r2
2 − a2

t
.

One therefore expects that the contribution to the sum of the series (11) should be negligible
for � greater than about

�M = α
aM(r1 + r2)

t
+ β.

The choice for the values of the coefficients α, β depends on the precision required. The
choice α = 3/2 and β = 5 has been found largely sufficient for the precision of drawing
figures 5 and 6. The reason for the addition of the number β is that for small quantum numbers,
classical argument may fail. For the cases considered in figure 5, �M is respectively equal to
5.3, 6.5, 12.5 and 42.5, for t respectively equal to 25, 5, 1 and 1/5. The values of � above
which the visual appearance of the graph does not change are 2, 2, 7, 30, for t respectively
equal to 25, 5, 1 and 1/5. The calculations have been made up to � equal to 7, 15, 25 and 50
for t respectively equal to 25, 5, 1 and 1/5 and it has been verified that the decrease is very
rapid above �M . For the case considered in figure 6, �M is equal to 20 and it has been verified
that the visual appearance of the graph does not change as long as the truncation value is equal
to or above 13. If one requires increasing the relative accuracy, the majorant must of course
also be increased.

Physically, an important result is that in the limit a → 0 or t → ∞ or M → 0, only the
s and p waves contribute significantly. (Of course the limit M → 0 is not a physical one.)
What about the opposite cases, the short time limit ? It will be seen in the next section that the
classical result of Van Vleck–Gutzwiller provides an excellent approximation in the classical
domain.

5.3. Comparison with a classical approximation

In the classical region α � αc (see equation (23)), or otherwise stated, for r2 outside the
geometric shadow of the hard sphere of radius a, the VG approximation for the hard sphere
quantum propagator, to be denoted by 〈r2| UV G(t) |r1〉 is [18, 19]

〈r2| UV G(t) |r1〉 = 〈r2| U0(t) |r1〉 − 1

(2π i)3/2

√
det

∣∣∣∣− ∂2S

∂r2∂r1

∣∣∣∣ exp(iS) (24)

In equation (24), 〈r2| U0(t) |r1〉 is the free propagator (see equation (13)). S is the classical
action, the integral over time of the Lagrangian L:

∫ r2

r1
Ldt = ∫ r2

r1

p2

2M
dt for the real classical

trajectory starting at time 0 at the point r1 and ending at time t at the point r2 after one
collision with the hard sphere of radius a. (The present action S is called the Hamilton’s
principal function in [19, 25] , where it is noted R. In these references, the name action and
the letter S refer to another function.) The minus sign on the right-hand side of equation (24)
originates from the reflection at the point of collision with the hard sphere. The action S is thus
a function of the variables M, t, a, r2, r1. Finally ∂2S

∂r2∂r1
denotes the matrix of order 3 whose

ij element is the second derivative ∂2S
∂(x2)i ∂(x1)j

of the action with respect to the coordinates
of the end points r2, r1 of the classical trajectories. As emphasized in [19], the burden of
computing explicitly 〈r2| UV G(t) |r1〉 lies completely within classical mechanics, and the VG
approximation can appropriately also be called the classical propagator. Specifically

S = M

2t
l2 (25)

13
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with l the length of the classical trajectory connecting the points r1, r2 with one collision with
the hard sphere. In the applications to be discussed now, the length l has been determined
numerically by minimization, and the second derivative of S has been determined numerically
according to the relation [29]

∂2f

∂x∂y
(x, y) 	 f (x + b, y + b) − f (x − b, y + b) − f (x + b, y − b) + f (x − b, y − b)

4b2

The accuracy has been tested by changing the values of b. For example, for b = 1/100 and
b = 1/10, the relative change of all points in figures 5 and 6 (to be defined as the ratio between
the result with b = 1/10 minus the result with b = 1/100 and the result with b = 1/100) is
less than 5 × 10−4.

It is seen in figure 5 that the accuracy of the VG approximation increases when t decreases.
This accuracy is excellent for t = 1/5, except when approaching the classically forbidden
region (α 	 αc). This also holds for figure 6. This behavior with respect to time was expected
since the classical action increases when t decreases or when l increases (see equation (25)).
The action S increases with α. For figure 5, the minimum values of S, for α = 0, are
0.18h̄, 0.9h̄, 4.5h̄, 22.5h̄ for t = 25, 5, 1, 1/5, respectively. For figure 6, the minimum value
of S, for α = 0, is 32h̄. Path integral formulation of quantum mechanics [33, 1, 34] tells
us that for a very large value of the classical action, the sum over all paths (classical and
non-classical) is dominated by the classical path due to the stationary value of the action for
this path. It is therefore natural that the accuracy of the VG propagator increases when S

increases (at a fixed value of α). What is remarkable is the degree of accuracy for such low
values of the action S, only a few units of h̄. This is however not quite a surprise since the
exact value of the free propagator (see equation (13)) coincides with the free VG propagator,
and the real classical trajectory with one collision with the hard sphere is nothing but two free
trajectories (one before the collision, one after).

Only the moduli of propagators are reported in figures 5 and 6, but when the modulus
of the approximate propagators agrees with the modulus of the exact result, the real and
imaginary parts also agree.

6. Conclusion

By an explicit determination of the matrix elements of the hard sphere resolvent (see
equation (4)), an exact expression for the partial wave hard sphere quantum propagator in
a three-dimensional space has been given in terms of a Fourier transform of an expression
involving spherical Bessel functions. For the s wave case, the Fourier transform has been
calculated analytically. This Fourier transform has also been evaluated for the general case by
contour integration in terms of a Laplace transform and residues contribution. This Laplace
transform is particularly suitable for numerical computation for the large time value t (small
values of the classical action S (see equation (25)). For small t values (more generally for
large values of the classical action S in units of h̄), numerical calculations by both methods
(Fourier and Laplace) are difficult, and require a large number of digits for precision and a
large computation time.

The calculation of the hard sphere quantum propagator by summation over partial wave
contribution has shown an excellent accuracy of the Van Vleck–Gutzwiller approximation in
the classical domain α < αc for α not in the vicinity of αc, and when the classical action S
(see equation (25)) is greater than only a few units of h̄. In the classically forbidden domain
(α > αc), the exact result rapidly decreases as expected, but exhibits a small local maximum
for α = π , i.e. for the point r2 on the other side of the sphere, so that the three points r1,

14
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the center of the sphere and r2 are aligned. This effect is reminiscent of Arago bright spot in
Fresnel diffraction [31, 32].
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